Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pathol Lab Med ; 148(3): 327-335, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270802

RESUMEN

CONTEXT.­: Current approaches for characterizing retained lung dust using pathologists' qualitative assessment or scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) have limitations. OBJECTIVE.­: To explore polarized light microscopy coupled with image-processing software, termed quantitative microscopy-particulate matter (QM-PM), as a tool to characterize in situ dust in lung tissue of US coal miners with progressive massive fibrosis. DESIGN.­: We developed a standardized protocol using microscopy images to characterize the in situ burden of birefringent crystalline silica/silicate particles (mineral density) and carbonaceous particles (pigment fraction). Mineral density and pigment fraction were compared with pathologists' qualitative assessments and SEM/EDS analyses. Particle features were compared between historical (born before 1930) and contemporary coal miners, who likely had different exposures following changes in mining technology. RESULTS.­: Lung tissue samples from 85 coal miners (62 historical and 23 contemporary) and 10 healthy controls were analyzed using QM-PM. Mineral density and pigment fraction measurements with QM-PM were comparable to consensus pathologists' scoring and SEM/EDS analyses. Contemporary miners had greater mineral density than historical miners (186 456 versus 63 727/mm3; P = .02) and controls (4542/mm3), consistent with higher amounts of silica/silicate dust. Contemporary and historical miners had similar particle sizes (median area, 1.00 versus 1.14 µm2; P = .46) and birefringence under polarized light (median grayscale brightness: 80.9 versus 87.6; P = .29). CONCLUSIONS.­: QM-PM reliably characterizes in situ silica/silicate and carbonaceous particles in a reproducible, automated, accessible, and time/cost/labor-efficient manner, and shows promise as a tool for understanding occupational lung pathology and targeting exposure controls.


Asunto(s)
Minas de Carbón , Exposición Profesional , Neumoconiosis , Humanos , Neumoconiosis/diagnóstico por imagen , Neumoconiosis/patología , Pulmón/diagnóstico por imagen , Pulmón/patología , Polvo , Dióxido de Silicio , Silicatos , Microscopía Electrónica de Rastreo , Carbón Mineral , Exposición Profesional/efectos adversos
2.
Occup Environ Med ; 80(8): 425-430, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295943

RESUMEN

BACKGROUND: Pneumoconiosis among coal miners in the USA has been resurgent over the past two decades, despite modern dust controls and regulatory standards. Previously published studies have suggested that respirable crystalline silica (RCS) is a contributor to this disease resurgence. However, evidence has been primarily indirect, in the form of radiographic features. METHODS: We obtained lung tissue specimens and data from the National Coal Workers' Autopsy Study. We evaluated specimens for the presence of progressive massive fibrosis (PMF) and used histopathological classifications to type these specimens into coal-type, mixed-type and silica-type PMF. Rates of each were compared by birth cohort. Logistic regression was used to assess demographic and mining characteristics associated with silica-type PMF. RESULTS: Of 322 cases found to have PMF, study pathologists characterised 138 (43%) as coal-type, 129 (40%) as mixed-type and 55 (17%) as silica-type PMF. Among earlier birth cohorts, coal-type and mixed-type PMF were more common than silica-type PMF, but their rates declined in later birth cohorts. In contrast, the rate of silica-type PMF did not decline in cases from more recent birth cohorts. More recent year of birth was significantly associated with silica-type PMF. CONCLUSIONS: Our findings demonstrate a shift in PMF types among US coal miners, from a predominance of coal- and mixed-type PMF to a more commonly encountered silica-type PMF. These results are further evidence of the prominent role of RCS in the pathogenesis of pneumoconiosis among contemporary US coal miners.


Asunto(s)
Minas de Carbón , Enfermedades Profesionales , Neumoconiosis , Humanos , Estados Unidos/epidemiología , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/etiología , Enfermedades Profesionales/patología , Dióxido de Silicio/efectos adversos , Polvo , Carbón Mineral/efectos adversos , Fibrosis
3.
Ann Am Thorac Soc ; 19(9): 1469-1478, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35353671

RESUMEN

Rationale: The reasons for resurgent coal workers' pneumoconiosis and its most severe forms, rapidly progressive pneumoconiosis and progressive massive fibrosis (PMF), in the United States are not yet fully understood. Objectives: To compare the pathologic and mineralogic features of contemporary coal miners with severe pneumoconiosis with those of their historical counterparts. Methods: Lung pathology specimens from 85 coal miners with PMF were included for evaluation and analysis. We compared the proportion of cases with pathologic and mineralogic findings in miners born between 1910 and 1930 (historical) with those in miners born in or after 1930 (contemporary). Results: We found a significantly higher proportion of silica-type PMF (57% vs. 18%; P < 0.001) among contemporary miners compared with their historical counterparts. Mineral dust alveolar proteinosis was also more common in contemporary miners compared with their historical counterparts (70% vs. 37%; P < 0.01). In situ mineralogic analysis showed that the percentage (26.1% vs. 17.8%; P < 0.01) and concentration (47.3 × 108 vs. 25.8 × 108 particles/cm3; P = 0.036) of silica particles were significantly greater in specimens from contemporary miners compared with their historical counterparts. The concentration of silica particles was significantly greater when silica-type PMF, mineral dust alveolar proteinosis, silicotic nodules, or immature silicotic nodules were present (P < 0.05). Conclusions: Exposure to respirable crystalline silica appears causal in the unexpected surge of severe disease in contemporary miners. Our findings underscore the importance of controlling workplace silica exposure to prevent the disabling and untreatable adverse health effects afflicting U.S. coal miners.


Asunto(s)
Antracosis , Minas de Carbón , Exposición Profesional , Neumoconiosis , Proteinosis Alveolar Pulmonar , Antracosis/epidemiología , Carbón Mineral , Polvo , Humanos , Exposición Profesional/efectos adversos , Neumoconiosis/epidemiología , Prevalencia , Dióxido de Silicio/efectos adversos , Estados Unidos/epidemiología
4.
Chemosphere ; 157: 160-5, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27219291

RESUMEN

4-Methylcyclohexanemethanol (4-MCHM) is a saturated higher alicyclic primary alcohol that is used in the froth flotation process for cleaning coal. In early 2014, a large spill of crude chemical (containing primarily 4-MCHM) to the Elk River near Charleston, WV contaminated the local water supply. Carbon filters at the affected water treatment facility quickly became saturated, and the contaminated water was distributed to nearby homes and businesses. Sorption of 4-MCHM to granular activated carbon (GAC) was studied in the laboratory using head space (HS) analysis via gas chromatography with a flame ionization detector (GC-FID). Sorption to raw coal was also investigated, since this material may be of interest as a sorbent in the case of an on-site spill. As expected, sorption to both materials increased with decreased particle size and with increased exposure time; although exposure time proved to be much more important in the case of GAC than for coal. Under similar conditions, GAC sorbed more 4-MCHM than raw coal (e.g., 84.9 vs. 63.1 mg/g, respectively, for 20 × 30 mesh particles exposed to 860 mg/L 4-MCHM solution for 24 h). Desorption from both materials was additionally evaluated. Interestingly, desorption of 4-MCHM on a mass per mass basis was also higher for GAC than for raw coal. Overall, results indicated that GAC readily sorbs 4-MCHM but can also readily release a portion of the chemical, whereas coal sorbs somewhat less 4-MCHM but holds it tightly.


Asunto(s)
Carbón Orgánico/química , Carbón Mineral/análisis , Ciclohexanos/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Carbono/química , Ciclohexanos/química , Modelos Teóricos , Tamaño de la Partícula , Ríos/química , Volatilización , Contaminantes Químicos del Agua/química , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...